IN THIS ISSUE:

MANAGING ROUGH STRAWBERRY ROOT WEEVIL
PHOMOPSIS DIE-BACK ON BLUEBERRIES
WHITE LEAF SPOT ON CRUCIFER
LIGHT LEAF SPOT ON CRUCIFER
WEATHER UPDATE
UPCOMING EVENTS
MANAGING ROUGH STRAWBERRY ROOT WEEVIL IN STRAWBERRY

Lynell Tanigoshi, Bev Gerdeman and Hollis Spitler
WSU Mount Vernon Northwestern Washington Research & Extension Center, Mount Vernon, WA

Four root weevil species in the genus Otiorhynchus: strawberry root weevil (SRW), rough strawberry root weevil (RSRW), black vine weevil (BVW) and more recently the clay colored root weevil (CCRW) remain perennial pests for strawberry growers in the Pacific Northwest. However, RSRW has emerged as the key root weevil pest in Oregon and Washington strawberry over the past decade or more. This population shift began after the label cancellation of Furadan™ for strawberry and major shift to the registered contact and stomach insecticide/acaricide Brigade™/Capture™ in 1996. RSRW larvae damage strawberry rootlets and cambium tissue around the crown during their approximate nine month life stage. If not controlled this foraging behavior causes stunting, die-back and poor yielding plants of Pacific Northwest summer varieties such as ‘Totem’ and ‘Hood’ by the third season.

Current area wide programs in PNW strawberries are aimed at timing drench and canopy applications (e.g., Brigade® WSB, Actara®, Assail®, Admire Pro®, Malathion®) to optimize control of over wintered and newly emerged summer generation of adults before they begin laying eggs in the soil during strawberry harvest. Eggs are laid on the soil at the base of plants and hatch in about three weeks. The main egg laying cycle of new adults occurs about a month after peak egg laying of the BVW and SRW. Our root weevil research with RSRW indicates this cool weather-adapted species does little feeding on strawberry foliage at night. The characteristic notching of the leaves is an important diagnostic tool to assess a field infestation and subsequent treatment efficacy for a grower (Figs. 1, 2) for other root weevil species. Instead, the RSRW congregate at the

Fig. 1. Feeding notches by BVW adults on strawberry foliage.
base/crown area under leaves, debris and soil during the day from May and post harvest (Fig. 3). Given these adults do not notch canopy foliage, are rarely found at night with the traditional flashlight search method after 10 PM, RSRW adults must be sampled in the soil and around the strawberry crown by the hand and knee method (Fig. 4). By mid-summer this root weevil is often found congregating tightly in the strawberry crown, clumped together in the soil adjacent to the crown or in moist zones within the soil after field renovation in July (Fig. 5). Presumably this behavior is associated with water conservation and a state of quiescence during this period of high soil temperatures. Because of these behaviors and the difficulty penetrating the dense foliage canopy with insecticide, we concluded that postharvest foliar or renovation drench treatments would not effectively control these quiescent RSRW populations.

Growers are now targeting fall and/or winter neonicotinoid drench application that possess good larval and adult weevil activity. Applications are timed to coincide with periods of rainfall to enhance movement of the chemical into the root zone. The soil formulations of the neonicotinoids exhibit rapid root uptake and are highly systemic within the plant. These biological parameters provide for...
excellent residual control. This chemistry may be applied with traditional high-pressure, high-volume boom sprayers and recommended drop nozzles passing through the strawberry’s canopy during harvest, fall and winter. This sprayer set-up will also give better soil coverage of other MOA insecticides recommended for the control of both overwintered and summer generations resting during the day under dense strawberry foliage.

Recent bioassays with Actara, Admire Pro, Platinum® and Brigade WSB applied at field rates as air-dried dip treatments to strawberry foliage resulted in near 100% mortality of June emerged RSRW adults. Unregistered foliar Exirel® (registered on blueberry) showed near applications to control adult populations showed the grower no evidence of economic suppression in spite of five treatments with three insecticides (Fig. 6). Bioassays in the lab indicate good toxicity to adult RSRW that rules out the onset of RSRW resistance to the pyrethroid and neonicotinoid classes of insecticides. The chemistries recommended for root weevil control remain efficacious while poor commercial outcomes suggest further research is needed with regard to timing and delivery methods for the different IRAC classes to control the soil dwelling larvae of the RSRW. Thus, our research for RSRW in strawberries is aimed at timing canopy applications to optimize control of overwintering and summer generation adults before they begin laying eggs in the soil during strawberry har-
Uncontrolled summer emerging RSRW will lay eggs well into fall, unlike the BVW and SRW. We feel their less specialized foraging strategy does not expose them to contact/stomach insecticides as we have successfully exploited for the other root weevil species common on strawberry. RSRW’s long egg laying period is another major factor that has elevated this species from incidental to the major root weevil pest in strawberry. In summary, the RSRW goes largely undetected by scouts/growers applying traditional root weevil monitoring methods of detecting notched leaves and examining foliage for adults at night with the help of a flashlight. We hope this article will continue to shed new light to growers and fieldmen about the difficult challenges to economically manage this unique root weevil.
In recent years, symptoms of twig blight and die-back have been observed in many young blueberry fields, particularly in cultivars Draper and Liberty. These fields establish well a few years after planting. When cropping begins the older stems express a slow decline, leaves get smaller, new growth ceases and fruit fails to size. Affected stems eventually die and, in some cases, the young twigs/shoots begin to show blighting symptoms. Over the years, fruiting stems continue to collapse sometimes resulting in the death of the entire plant. Root system of the affected plant remains healthy. No obvious external symptoms can be seen on stems, but on close inspection, an internal discolouration of the wood is seen which often extends down the stem and, probably, into the crown. In some cases, the young stems produced by the infected plants tend to have silvery, shiny leaves that may or may not be associated with Phomopsis. In the lab, Phomopsis can be readily isolated from the symptomatic tissues. While Phomopsis has certainly been recorded previously in BC blueberry fields, mostly causing distinct cankers on stems, it has not been seen to affect young plantings so aggressively. Further research is underway to characterize this pathogen and to better understand its infection process and disease cycle. It is suspected that the disease begins as twig infections which occur after plants are set in the field. These infections are believed to grow internally over the years and eventually affect
and kill the entire stem or crown. Pending more information, the following are preliminary recommendations which should help to minimize Phomopsis infection and damage in young blueberry fields, particularly cultivars Draper and Liberty.

1. **Monitoring.** Inspect young fields for blighting and dieback on twigs and shoot tips in late winter and early spring. Several other organisms including Botrytis and Pseudomonas can cause similar symptoms. A lab test can confirm if Phomopsis is present.

2. **Pruning.** Prune out and destroy diseased wood.

3. **Frost Protection.** Phomopsis damage can to be more severe in fields which are prone to fall and spring frosts. Avoid planting Draper and Liberty in frost-prone fields or provide frost protection.

4. **Nitrogen Management.** Both Draper and Liberty have a tendency to grow vigourously though the fall and can be slow to become dormant. Avoid excessive nitrogen fertilization which can encourage soft and late growth in the fall which, in turn, may contribute to more infection by Phomopsis and other pathogens.

5. **Fungicides.** Aside from the use of copper to manage Pseudomonas, most growers do not use fungicides during the non-bearing years because there is no fruit to protect. For Draper, Liberty and other cultivars that are susceptible to Phomopsis, protective fungicide sprays should be applied during the spring and fall prior to the onset of rains. Bravo, Cab-
DISEASE ALERT:
WHITE LEAF SPOT IN CRUCIFER SEED FIELDS IN THE WILLAMETTE VALLEY

Cynthia M. Ocamb
Oregon State University

Beginning late March 2014, I found several leaf spot diseases in fall-sown crucifer crops and weedy species in the Willamette Valley. A survey in OSU research fields of fall-sown canola during late October 2013 showed no leaf spots or seed/seedling diseases. However, white leaf spot and gray stem caused by the fungus Pseudocercosporella capsellae (sexual stage: Mycosphaerella capsellae) were observed during 2014 in canola research fields as well as in commercial seed fields of forage Brassicas and “field” turnip. White leaf spot was also detected in volunteer black mustard and forage fields. Susceptible hosts reportedly include species of Brassica (broccoli, cabbage, canola, cauliflower, Chinese cabbage, mustard, turnip, etc.) as well as radish and horseradish. Weedy types such as wild radish, wild mustard, and shepherd’s purse are susceptible to white leaf spot and gray stem (1).

How the pathogen overwinters and reproduces in the Pacific Northwest is unknown at this time. In the UK, ascospores develop on infected Brassica or Raphanus residues during the autumn and can be winddispersed relatively long distances following rain or dew events. Beginning in late fall, the asexual spores (conidia) can develop and are spread relatively short distances by rain or splashing water, potentially causing pod infections the following spring; however, seed transmission is not thought to play a major role in disease spread. Temperatures of 50 to 60°F under moist conditions promote disease development.

This fungus can attack leaves, stems and

Photo 1A (above left) shows late stage white leaf spot (black arrows) and Phoma leaf spot (red arrow) on turnip; upper right (Photo 1B) is an earlier stage of white leaf spot.
pods. Tan, irregular or roundish spots develop on leaves, especially leaf tips and edges, later becoming ashy gray to white with a brownish margin and yellowish halo (Fig 1A). White conidia can be observed on the leaf spots. The leaf spots become dark brown as leaves senesce due to the initiation of the sexual stage. The center of older lesions may fall out, resulting in a shothole appearance. Foliar lesions may coalesce when disease is severe, resulting in defoliation. Stem lesions are elongated and brown at first, turning ashy gray to white with a brownish margin (Fig 2A); the numerous tiny dark specks due to the formation of the pathogen’s sexual stage. There is a distinct boundary between diseased and healthy tissue on the stem. Gray stem lesions are superficial; the pith is not severely infected. Pod infections start as small brown spots that expand and turn grayish-white with age and develop the numerous tiny dark specks indicative of the sexual stage.

Cultural controls:
- Eradicate susceptible weeds and volunteer *Brassica* and *Raphanus* plants.
- Remove plant debris or bury by deep-plowing. Flailing followed by a more shallow plowing may be sufficient depending on amount and size of plant debris and environmental conditions.
- Rotate out of crucifers for three years.
- Avoid planting in or adjacent to a field infected the previous season.
- Plant resistant cultivars; many genotypes of *Brassica napus* and *B. juncea* from China are resistant to this disease (2).

References

Photo 2A (above left) shows gray stem of turnip; upper right (Photo 2B) is a close-up of white leaf spot showing white conidia.
DISEASE ALERT:
LIGHT LEAF SPOT IN CRUCIFER SEED FIELDS IN THE WILLAMETTE VALLEY

Cynthia M. Ocamb
Oregon State University

Beginning late March 2014, I found several leaf spot diseases in fall-sown crucifer crops and weedy species in the Willamette Valley. A survey in OSU research fields of fall-sown canola during late October in 2013 showed no leaf spots or seed/seedling diseases. However, light leaf spot caused by the fungus Cylindrosporium concentricum (sexual stage: Pyrenopeziza brassicae) was observed causing disease this spring in canola research fields as well as in commercial seed fields of forage Brassica species and “field” turnip. Light leaf spot was subsequently detected in other Brassica members including wild mustard, volunteer black mustard, vegetable Brassica seed fields, and Brassica species used as cover crops during 2014. While the specific host range for C. concentricum within the tribe Brassiceae is unknown at this time, it is likely that all brassicas crops grown in the Pacific Northwest are susceptible (1) with a range of susceptibility within each crop species. This disease hasn’t been previously reported in North America, although an infected mustard field was found in western Oregon during 1998. Oilseed rape can be very susceptible with losses resulting from stand die-out, reduced pod numbers, and premature pod ripening; with less...
severe infections there is an overall growth re-
duction. *Brassica* species grown as vegetables in
other areas of the globe, where this disease has
been reported, suffer blemish defects that result
in a decrease in quality but not quantity of yield.

Ascospores (sexual stage) develop from apo-
thecia on infected plant residues; after a wetting
period, ascospores can be wind-dispersed rela-
tively long distances to susceptible plants. Asex-
ual spores (conidia) that develop can be spread
only relatively short distances by rain or splash-
ing water. Conidia enable increase of disease
within a field, and potentially, pod infections
during the following spring. Seed can be infect-
ed or casually infested with the asexual stage,
yet seed transmission occurs at very low rates
due to rapid die-out of the pathogen on seed.
Even at low rates, infected seeds can move the
pathogen into new regions. Epidemics can be
initiated by seedborne inoculum or via asco-
spores arising from neighboring fields with in-
fected plants or residues, or from infected vol-
unteers. Wet conditions and cool tempera-
tures (around 60°F) promote disease develop-
ment. Plants infected during autumn may re-
main symptomless throughout the winter sea-
son until the following spring.

Cylindrosporium concentricum can attack
leaves, stems, and pods; subsequently growing
in a systemic manner throughout the plant ex-
cept in the roots. Flecking may be observed on
cotyledons while leaf infections start as discol-
ored patches that develop into irregular brown
lesions with cracked centers, sometimes turn-
ing black. Leaf lesions can coalesce, causing
death of leaves. When young leaves are infect-
ed, distortion may also develop. Stem lesions
are superficial, elongated brownish streaks
with grayishblack margins. Flower infections
may cause abortion. Pods infected while im-
mature appear distorted while pods infected
later appear relatively healthy looking, but
may have white spore masses present. Seedlings can be killed or plants may be stunted. Cauliflower will have a brown discoloration of curds while Brussels sprouts exhibit black lesions.

Cultural controls:
- Eradicate susceptible weeds and volunteer Brassica plants.
- Remove plant debris or bury by deep-plowing; this is important for preventing sexual recombinants from developing with new virulence or fungicide resistance. Flailing followed by a shallow incorporation may be sufficient depending on the amount and size of plant debris as well as environmental conditions.
- Rotate out of crucifers for three years.
- Avoid planting adjacent to a field infected the previous season.

Chemical control: Apply sprays when leaf spots are first observed in the fall. Additional applications during late winter or early spring may be needed.
- Proline 480 SC (Fungicide Resistance Action Committee (FRAC) Group 3) at 4.3 to 5.7 fl oz/A is labeled for other fungal diseases on canola and can be used in Oregon on canola to help control light leaf spot.
- Quash (Group 3) at 2 to 4 oz/A at 20% to 50% flowering is labeled for other fungal diseases on canola and can be used in Oregon on canola to help control light leaf spot.

Reference
WEATHER UPDATE

All information here is derived from the four weather WSU AgWeatherNet stations (http://weather.wsu.edu/awn.php) in Whatcom County. Current weather conditions can be found at: http://whatcom.wsu.edu/ag/currentdata.html. Station information can be found here.
Upcoming Events

July
OSU Blueberry Field Day
July 16th
1:00 pm - 5:00 pm
Aurora, OR
A focus on research for commercial growers; A focus on the breeding program & research on conventional and organic production systems for commercial growers.

WSU Raspberry Machine Harvesting Field Day
July 17th
1:00 pm - 3:00 pm
Lynden, WA
Harvested fruit from the plots will be on display. Three WSU selections (WSU 1980, WSU 2166 and WSU 2188) that are being planted in Grower Trials this year will be fruiting in these plantings. There are also over 80 WSU selections in the 2012 machine harvesting planting that will be machine harvested for the first time this year and 80 selections that were harvested last year in the 2011 planting.

August
WSU Organic Agriculture Research Field Day
August 4th
10:00 am - 12:00 pm
Puyallup, WA
WSU researchers and cooperating farmers are evaluating cover crops and equipment for use in organic reduced tillage production. Come tour research plots and discuss the evolution of this production system. We will also discuss comparisons of drip irrigation and water chlorination for reducing microbial contamination of produce from irrigation water.

North Cascades Meat Producers Cooperative BBQ
August 6th
5:00 pm - 7:30 pm
Stanwood, WA
The North Cascades Meat Producers Cooperative and Del Fox Meats invite you to a BBQ dinner and presentation of their plans to bring expanded USDA-inspected meat processing to Snohomish, Island, Skagit, and Whatcom Counties!